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Abstract

In response to widening achievement gaps and increased demand for post-secondary educa-

tion, local and federal governments across the US have enacted policies that have boosted high

school graduation rates without an equivalent rise in student achievement, suggesting a decline

in academic standards. To the extent that academic standards can shape effort decisions, these

trends can have important implications for human capital accumulation. This paper provides

both theoretical and empirical evidence of the causal effect of academic standards on student ef-

fort and achievement. We develop a theoretical model of endogenous student effort that depends

on grading policies, finding that designs that do not account for either the spread of student

ability or the magnitude of leniency can increase achievement gaps. Empirically, under a re-

search design that leverages variation from a statewide grading policy and school entry rules, we

find that an increase in leniency mechanically increased student GPA without increasing student

achievement. At the same time, this policy induced students to increase their school absences.

We uncover stark heterogeneity of effects across student ability, with the gains in GPA driven

entirely by high ability students and the reductions in attendance driven entirely by low ability

students. These differences in responses compound across high school and ultimately widen

long-term achievement gaps as measured by ACT scores.
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1 Introduction

Education is often considered “the great equalizer” for its unique capacity to promote social mobil-

ity through the accumulation of human capital. In response to widening socioeconomic achievement

gaps and increased demand for high quality post-secondary education, state and federal govern-

ments have enacted policies to promote educational attainment. These efforts have had reported

success. The last decade has seen steady increases in graduation rates and grade point averages in

U.S. high schools (Murnane, 2013), yet student achievement—as measured by NAEP, ACT, and

SAT scores—has stagnated, while college enrollment rates have decreased. Together, this suggests

that academic standards have declined over time (Harris et al., 2023; Hurwitz and Lee, 2018; Blagg

and Chingos, 2016). At face value, a decline in academic standards for graduation can naturally

lead to more equitable outcomes since a larger share of students meet graduation requirements

and obtain a high school diploma. However, this simplified view ignores the possible endogenous

role that academic standards have on students’ academic decisions, which directly impacts their

accumulation of human capital.

This paper explores the relationship between academic standards, student effort, and human

capital accumulation in two distinct ways: First, we develop a theoretical model of student achieve-

ment with endogenous effort in the presence of changing grade policies. Our simple model reconciles

mixed findings in the literature and provides insight for why these policy effects are theoretically

ambiguous. In particular, we show that an implementation which does not account for either the

spread of student ability or the magnitude of the relative leniency can exacerbate the achievement

gap in public schools. Motivated by the predictions of our model, we then empirically test for the ef-

fects of academic leniency on student effort and achievement in a setting where high school students

faced an explicit reduction in standards. We recover the causal effect of this change on student

outcomes by constructing a mechanism that leverages the implementation timing of a statewide

policy in conjunction with a separate assignment rule that determines high school entry eligibility.

Understanding the effects of academic standards on student outcomes is challenging for two

reasons. First, standards are intrinsic to teachers, schools, and districts. As students select teachers

and schools, the effects of grade leniency on student outcomes becomes confounded by sorting

(Figlio and Lucas, 2004). Second, changes in academic standards often occur gradually over time.

Meaningful changes in the distribution of grades necessarily happens over long periods of time,

making it impossible to disentangle treatment effects from unobserved time trends. We overcome
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these challenges by exploiting two sources of variation. First, we exploit a statewide shift in grading

standards implemented by the State of North Carolina. In the Fall of 2014, the North Carolina

State Board of Education voted to standardize high school grading policies to a 10-point scale in

an effort to increase comparability between districts and increase the competitiveness of students

applying to colleges. This policy effectively decreased the associated numeric threshold for all letter

grades for all students across all subjects, courses, and teachers, thereby moving all public schools

to a more lenient grading scale.

A simple comparison of treated and untreated cohorts might lead to concerns over selection into

treatment if students are endogenously retained in school (Deming and Dynarski, 2008). Thus,

we require a mechanism which (quasi-)randomly assigns observably similar students to either the

stricter grade standard or the more lenient one. In North Carolina, a separate policy which sorts

students to a high school entry year provides this necessary second source of variation. Under a

fuzzy regression discontinuity research design, we compare students who happen to belong to the

first cohort of 9th graders exposed to more lenient grading because their birth date was just to the

right of the kindergarten entry cutoff, to students who happen to belong to the previous 9th grade

cohort because their birth date was just to the left.

We rely on rich administrative data on the universe of North Carolina public school students

for information on achievement and attendance during high school. We merge these data with

exact birth date records from the North Carolina Department of Public Instruction to generate

a measure of relative distance to the North Carolina kindergarten entry rule cut point. We use

this distance measure as the running variable in our regression discontinuity specification. We

find that increased grade leniency led students to obtain GPAs that were 0.27 points higher (11%

increase), with no effects on student achievement. Furthermore, students that faced more lenient

grading standards increased their school absences by 1.3 days per year (20% increase), which drove

students to become more chronically absent.

In unpacking the results, we uncover stark heterogeneity of effects across observed student

ability. Students at the top of the 8th grade performance distribution were the main drivers of

GPA gains, but saw no increases in absences. At the same time, students on the bottom end of the

distribution saw no GPA gains from greater grade leniency and were the main drivers of increased

absenteeism. The lack of GPA gains for students on the lower end of the test score distributions

is striking for two reasons. First, the policy mechanically increases GPA for all students. Second,

the North Carolina policy created a larger buffer for students at the margin of passing a class.
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Therefore, a priori, we would expect this policy to boost GPA for lower achieving students the

most.

Finally, we explore whether heterogeneous effects compound over time. On one hand, the initial

exposure to this policy could have caused gaps which subsequently disappeared as students adjusted

to the new grading standard. On the other hand, gaps may widen each year if the effects of the

policy generated lasting changes in the education trajectories of students. We find the latter to

be true. Increases in student absences persist and compound over time only for students on the

lower end of the test score distribution which is later reflected in decreased ACT achievement for

this group. Thus, academic leniency exacerbated achievement gaps and lessened human capital

accumulation for students already at a deficit.

This paper relates to three main strands of the literature. We first contribute to a small and

growing literature that explores the role of student effort in human capital accumulation. An

empirical side of this literature has found that student effort is a key contributor to academic

success. Students who are absent and invest less time and effort studying, have been found to have

lower achievement and attainment (Durden and Ellis, 1995; Stinebrickner and Stinebrickner, 2008;

Metcalfe, Burgess and Proud, 2019). We contribute to this literature by documenting how a policy

that induced students to reduce their effort in school also led to decreases in achievement.

A theoretical side considers the strategic decision-making process of students under the incen-

tives produced by educational grading standards (Becker and Rosen, 1992; Betts, 1998). This

paper makes a contribution to this literature by developing a model in which students of different

ability types, with different returns and costs to effort, choose effort optimally in response to a

given grade regime. The key takeaway of this model is that student response depends in part

on the magnitude of academic leniency induced by the policy and the discrepancy and spread of

the student score distribution, which can generate ambiguous effects of grading policy on student

investments and learning in school. The predictions of our model help to reconcile competing and

incongruous findings in the literature, which has found that relaxing grading standards may lead

students to decrease their effort in some contexts (Babcock, 2010; Figlio and Lucas, 2004; Hvidman

and Sievertsen, 2021), while at the same time motivate and benefit students in other settings (Ahn

et al., 2019; Dee et al., 2016).

Second, we contribute to an established literature on the unintended consequences of tightening

accountability measures for public schools. Accountability in education has traditionally been

designed to shift incentives for educators and schools. In response to these policies, numerous types
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of unintended responses to accountability have been documented, such as the effects of teaching

to the test (Koretz, 2002; Jacob, 2005; Glewwe, Ilias and Kremer, 2010), manipulating who takes

high-stakes exams (Jacob, 2005; Figlio, 2006; Cullen and Reback, 2006), and inflating pass rates of

important exams (Dee et al., 2016). However, education policies also induce endogenous responses

from students, which may distort the association between educational achievement and human

capital accumulation. Our paper speaks to the unintended response of policies in shaping student

behavior. Consistent with the literature on unintended consequences of education policies, we find

a concentration of gains for students at the top of the ability distribution with negative impacts

for students at the bottom end of the distribution.

Lastly, we contribute to a relatively large literature which documents grading standards and its

subsequent effects on student welfare. A robust strand of work documents the impact of grading

standards on student subsequent achievement (Hvidman and Sievertsen, 2021), how students sort

into courses and programs (Bar, Kadiyali and Zussman, 2009; Butcher, McEwan and Weerapana,

2014; Ahn et al., 2019), how students endogenously change the level of effort they choose to

exert (Babcock, 2010), and how students perform in the labor market (Hansen, Hvidman and

Sievertsen, 2023). We contribute to this literature by recovering causal effects of academic leniency

on student effort and learning and documenting large and persistent heterogeneous effects across

student ability.

The remainder of the paper is structured as follows. Section 2 develops a theoretical model where

students respond endogenously to grading policies. Section 3 describes the grading policy change

implemented by the North Carolina State Board of Education in 2014. Section 4 describes the

data used in the analysis and provides summary statistics for our final analysis sample. Section 5

establishes the research design. Finally, Section 6 presents our results, validated in Section 7.

Section 8 concludes the paper and provides suggestions for future work.

2 Conceptual Framework

We first develop a model of student responses to grading standards. We construct this simple

model to guide the interpretation of our empirical results and provide a stylized prediction for

how students may respond differently to changes in grading standards or policies depending on

their prior skills and experiences. This model additionally demonstrates the importance of policy

implementation and the potential for unintentional consequences, such as widening achievement
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gaps.

2.1 Environment

Consider a high school student, i, defined by their latent ability, ai. We discretize ability according

to ai ∈ {aℓ, ah}, which refers to low and high ability, respectively. While we do not formally model

the evolution of ability and the impact of socioeconomic input variables (Todd and Wolpin, 2003;

Heckman, 2006), we consider ability as the dynamically-produced realization at the time we observe

students in our data. Given this, we assume students know their own type.

Schools are endowed with a grading policy, P , set forth by the district or state. Grading policies

map numeric course averages (scores) into quality points. The mean of these quality points forms a

student’s grade point average (GPA). Formally, P : S × p → {0, 1, ..., 4}, where S ≡ [0, 100] ⊂ R is

the score space and p := {pA, pB, pC , pD} is the set of cut points. We assume this policy has identical

threshold sizes for all grades above an F, meaning 100−pA = pA−pB, as well as pA−pB = pB−pC ,

and so on1. As an example, a 10-point policy takes the form

P (si,p) =



4.0, si ∈ [90, 100]

3.0, si ∈ [80, 90)

2.0, si ∈ [70, 80)

1.0, si ∈ [60, 70)

0.0 si ∈ [0, 60),

where si is student i’s numeric final average, or score, in a class. In the above, pA = 90, pB = 80,

pC = 70, and pD = 60. In general, a symmetric policy is an n-point one where n denotes the length

of each passing grade range.

We assume class scores depend on student ability and exerted effort, ei. In this paper, we

focus on the student’s problem of earning a grade in one class, although this model can easily be

extended to accommodate a semester’s worth of courses.2 Formally, si = s(ai, ei) for some concave

score production function s(·), increasing in ai and non-decreasing in ei. We parameterize si in the

1 This is a simplifying assumption that need not hold for the results to hold.
2 The easiest way to do this would be to assume the semester’s utility is the sum of each course’s utility. The problem
of the student would then change to account for the division of effort across course schedules, rather than the isolated
decision to exert effort in any one class.
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following way:

si = µ+ βai + γ ln ei + ξi, ξi ∼ F.

This function satisfies our assumptions for any (β, γ) >> 0. This form additionally features de-

creasing marginal returns to effort irrespective of ability. Given our functional assumption on score

production, we further impose ei ∈ [1, ē].

The term ξi captures shocks to the production of scores. In practice, F can be generalized

to any distribution belonging to the class of distributions which have bounded support Ω and are

everywhere differentiable along that support. In other words, we assume that P (ξi ∈ Ω) = 1

and that the pdf of F , f(·), exists and is continuous along Ω. We maintain an assumption of

boundedness to prevent shocks from taking on extreme values, which would send scores beyond the

range [0, 100]. In the discussion that follows, we explicitly parameterize the distribution F ≡ U(
¯
ξ, ξ̄)

for
¯
ξ := inf(Ω) and ξ̄ := sup(Ω).

Students also face costs to exerting effort, ci, in the form of a convex cost function c(ai, ei).

In this general setting, effort can refer to, e.g., time spent studying, completing homework, or

attending class. We parameterize the cost function according to

c(ai, ei) =
κei
ai

.

This functional form has the desired properties ∂c(·)/∂ai < 0 and ∂c(·)/∂ei > 0 for any κ > 0.

While we proceed under the assumption that cost is linear in effort and production is concave in

effort, our analyses would not substantively change if we instead imposed a convex cost function

with a linear production function.

2.2 The Student’s Problem

We specify a model in which students enjoy utility from their grade point average rather than their

numeric grade/score, which departs from the groundwork established in Betts (1998). Conceptually,

a student should not derive additional utility from earning a 95 versus a 94 in a class if both earn

that student a grade of A, or 4.0 quality points.3 We parameterize this mapping function P (·)
3 In high schools that rank students on the basis of GPA, GPA-dependent rank is one of the most important criteria
for college admissions (Espenshade, Hale and Chung, 2005).
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according to:

P (si) =
∑

j∈{A,B,C,D,F}

ϕj1{si≥pj}

If, for example, si falls in the B range, a student would derive utility ϕB + ϕC + ϕD + ϕF . The

ϕj term then represents the marginal utility received by earning the next highest letter grade.

Without loss of generality, we normalize the return to a grade of F by setting ϕF = 0.4 We further

impose that ϕj > ϕk for any grade j > k, meaning that students derive greater marginal utility

from accessing higher grades.

Students make effort decisions at the beginning of each semester before ξi is realized. As a

result, they seek to maximize their expected utility from earning a grade,

E[ui|ai, ei] = (ϕA + ϕB + ϕC + ϕD) · Pr(si ≥ pA) + ...+ ϕD · Pr(pC > si ≥ pD)−
κei
ai

. (1)

Because both high and low ability types incur shocks according to the same distribution, the

difference in the levels of ability may generate differences in the set of feasible grades, which we

denote by Gk for k ∈ {ℓ, h}. We assume these sets are distinct, i.e., Gℓ ̸≡ Gh. In particular, we

assume that the environment is defined such that low ability types experience

pC > µ+ βaℓ +
¯
ξ︸ ︷︷ ︸

lowest possible score

≥ pD and pA > µ+ βaℓ + γ ln ē+ ξ̄︸ ︷︷ ︸
highest possible score

,

while high ability types instead experience

pB > µ+ βah +
¯
ξ︸ ︷︷ ︸

lowest possible score

≥ pC and µ+ βah + γ ln ē+ ξ̄︸ ︷︷ ︸
highest possible score

≥ pA.

For either type, the first inequality denotes the infimum of their score set, which occurs when effort

is minimized and the lowest production shock is realized; conversely, the second inequality denotes

the supremum, obtained whenever effort is maximized and the highest productivity shock occurs.

As a result, low ability types have a feasible choice set Gℓ = {B,C,D} and high types instead have

Gh = {A,B,C}. We display a graphical representation of these differences in Figure 1.5

4 For completeness, we note that every grading policy will have pF = 0.
5 We recognize that feasible grade ranges can vary across subject domains and across school quality. However, we
abstract from these factors to focus on short-term student response to changes in grading standards.
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Figure 1: Feasible Grades for Students of Varying Ability Level

0 pD pC pB pA 100

F D C B A

High Ability

Low Ability

Notes: This figure displays the difference in feasible scores for students of high and low ability type. The corresponding grade
range is captured by the underbraces. For example, students earning a score between pA and 100 earn a grade of A. The range
for both types has identical length. The difference in the respective beginning or end point between the two types has a value
of β(ah − aℓ). This figure further demonstrates an example in which Gℓ = {B,C,D} and Gh = {A,B,C}.

Following Equation 1, students then solve the following problem:

max
1≤ei≤ē

(ϕA + ϕB + ϕC + ϕD) · Pr(si ≥ pA) + ...+ ϕD · Pr(pC > si ≥ pD)−
κei
ai

.

Using the fact that ξi ∼ U{ξ̄,
¯
ξ}, along with our aforementioned assumptions on feasible grades, it

can be shown that low ability types choose an optimal level of effort

e∗ℓ = aℓ
(
ϕB + ϕC

ξ̄ −
¯
ξ

)
γ

κ
,

while high ability students instead choose

e∗h = ah
(
ϕA + ϕB

ξ̄ −
¯
ξ

)
γ

κ
.

We then find that e∗h > e∗ℓ and arrive at our first result:

Result 1: For any given grading policy P and collection of students I ≡
⋃

i defined by

their distinct ability levels ai, a pair {j, k} which satisfies aj > ak and either Gj ̸≡ Gk

or Gj ≡ Gk will also imply e∗j > e∗k; that is, students with higher ability levels optimally

choose to exert a higher level of effort compared to lower ability students regardless of

whether the difference in ability generates a difference in the set of feasible grades.
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2.3 The Effects of a Policy Change

We now consider the effects of a state or district changing their grading policy P in favor of a new

policy P ′ with corresponding cut points {p′A, ..., p′D, p′F }. For tractability of our empirical setting,

we assume in this discussion that policy P ′ is more lenient than P , meaning the value of each

cut point is lower.6 Suppose P ′ shifts pA by d > 0. In other words, the district ends their use

of an n-point grading scale in favor of an (n + d)-point grading scale, which yields the following

relationships between new cut points and old ones:

p′A = pA − d, p′B = pB − 2d, p′C = pC − 3d, p′D = pD − 4d.

Perhaps unintentionally, this design generates larger changes for lower grades. This means that,

e.g., students that strive for C’s experience a relatively larger relaxation in standards than students

that strive for A’s.

We finally assume that ξi ⊥ P , which implies that si ⊥ P . This is equivalent to an assumption

that scores are produced exogenously to grading policies, which allows us to directly compare

the production of scores between policies. One possible violation to this would be if teachers

differentially curved grades in response to policy changes.7 We do not include the dimension of

teacher response in our model because our research design is able to overcome this identification

challenge.

Based on optimal effort decisions, we show the effects of a policy change are both (1) ambiguous

for a given student and (2) potentially heterogeneous between types of students. To demonstrate

this, we first solve the problem for low ability types in isolation and then introduce results including

high ability types. Under the initial n-point policy P , low types experienced Gℓ ≡ {B,C,D}. The

policymaker’s selection of d that forms the new (n+ d)-point policy P ′ generates the new feasible

grade set Gℓ′ . This new feasible set can be identical to Gℓ and generate no change in student effort,

we call this a stationary policy. Alternatively, the policy can eliminate the lowest possible grade

while maintaining the highest possible grade (i.e., Gℓ′ = {B,C}), which leads student to decrease

their effort. We term this a contractionary policy. Finally, the policy can introduce a new highest

possible grade (i.e., Gℓ′ = {A,B,C} or Gℓ′ = {A,B,C,D}), leading students to increase their effort.

We call this an expansionary policy.

6 The opposite results will hold if instead P ′ is less lenient.
7 While we do not model the role of teachers’ discretion in assigning grades, further work could expand our model to
incorporate this in the style of Diamond and Persson (2016).
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Under a stationary policy, it will necessarily be the case that ∆e∗ℓ = 0. However, whenever the

lenient policy is contractionary, students will reduce their effort absolutely:

e∗
′

ℓ = aℓ
(

ϕB

ξ̄ −
¯
ξ

)
γ

κ
< aℓ

(
ϕB + ϕC

ξ̄ −
¯
ξ

)
γ

κ
= e∗ℓ =⇒ ∆e∗ℓ < 0.

Conversely, an expansionary policy increases effort, regardless of whether the lower bound is

changed.8 Formally, for the case in which Gℓ′ = {A,B,C},

e∗
′

ℓ = aℓ
(
ϕA + ϕB

ξ̄ −
¯
ξ

)
γ

κ
> aℓ

(
ϕB + ϕC

ξ̄ −
¯
ξ

)
γ

κ
= e∗ℓ =⇒ ∆e∗ℓ > 0.

Therefore, a student whose feasible grade set does not include either an A or an F has an entirely

ambiguous response to a lenient grading policy. The effect will depend on both the size of the

policy d and the relative span of their feasible score set.

In the case of the high ability student, the effects are less ambiguous. Due to the fact that

Gh includes an A, no lenient policy P ′ can have an expansionary effect on high ability students.

Following the previous analysis, if Gh′
= {A,B}, then ∆e∗h < 0; otherwise, high ability students

will not change their effort in response to P ′. This leads us to our next result:

Result 2: A new grading policy P ′ which is more lenient than the currently enacted

policy P will have a non-positive effect on the effort exerted by the highest ability

students. The effect for lower ability students is ambiguous and depends on both the

magnitude of the policy’s leniency and the relative capability of these students.

We conclude this section by graphically demonstrating the ambiguity of the effects of these

types of policies, as depicted in Figure 2. In each of the six panels, we consider the same selection

of d but vary the relative location of the score set for each ability type.9

Note that, by construction, P ′ induces a higher expected grade for all students. If effort embodies

different measures of student engagement like attendance or study hours, then effort is a productive

input in the accumulation of human capital. A reduction in effort which coincides with an increase

in student GPA would suggest an inflation in grades which is artificially driven. However, lowering

standards can result in a net increase in effort across students, as evident in Figure 2a. In this

instance, high-achieving lower ability students are able to earn previously unobtainable grades. At

8 In the most extreme case, which we ignore as unrealistic, a policy could make the set of feasible grades singular,
which would actually decrease effort to its minimum.

9 We can show the same six outcomes if we instead fix the distribution of students but allow the choice of d to vary.
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Figure 2: Ambiguity in Policy Effects for Different Ability Types

0 pD pC pB pA 100

High Ability

Low Ability

F′ D′ C′ B′ A′

(a) ∆e∗ℓ > 0 and ∆e∗h = 0

0 pD pC pB pA 100

High Ability

Low Ability

F′ D′ C′ B′ A′

(b) ∆e∗ℓ = 0 and ∆e∗h = 0

0 pD pC pB pA 100

High Ability

Low Ability

F′ D′ C′ B′ A′

(c) ∆e∗ℓ < 0 and ∆e∗h = 0

0 pD pC pB pA 100

High Ability

Low Ability

F′ D′ C′ B′ A′

(d) ∆e∗ℓ > 0 and ∆e∗h < 0

0 pD pC pB pA 100

High Ability

Low Ability

F′ D′ C′ B′ A′

(e) ∆e∗ℓ = 0 and ∆e∗h < 0

0 pD pC pB pA 100

High Ability

Low Ability

F′ D′ C′ B′ A′

(f) ∆e∗ℓ < 0 and ∆e∗h < 0

Notes: The above figures illustrate different policies and ability distributions which could result in heterogeneous responses
among students. In each panel, the original cut points for policy P are denoted in black. The new cut points corresponding to
policy P ′ are denoted by the red lines, with the corresponding new grade regions outlined by the red braces and prime letters.

the same time, d is chosen to be small enough so that high ability students do not reduce their

effort. Importantly, this policy represents a possible way to mitigate achievement gaps.10

Alternatively, lowering grading standards could instead exacerbate the achievement gap. For

example, the policy enforced in Figure 2c results in a widening of the achievement gap (low ability

students reduce their effort while high ability students maintain their effort) despite the fact that

an identical policy reduced the gap in Figure 2a.

Overall, these disparate predictions point to the importance of policy design that is relevant to

10 Figure 2e also depicts a possible way to reduce the achievement gap, albeit without improving the human capital
accumulation of any group of students. Similarly, Figure 2d showcases a policy which reduces engagement among
high ability students while boosting effort among low ability students.
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the target student population. These predictions also help to explain why the literature on grade

inflation has mixed—and at times incongruous—findings. The key takeaway of this model is that

student response depends in part on the magnitude of academic leniency induced by the policy and

the discrepancy and spread of the student score distribution—which is a function of their abilities

and the return to their effort. As such, a relaxation of grading standards may lead students to

decrease their investments in school in some contexts (Betts and Grogger, 2003; Figlio and Lucas,

2004; Babcock, 2010; Nordin, Heckley and Gerdtham, 2019; Hvidman and Sievertsen, 2021), while

at the same time motivate and benefit students in other contexts (Dee et al., 2016; Ahn et al., 2019;

Minaya, 2020). As educators and policymakers seek to change grading standards in their school

districts, it is important that they understand that the heterogeneity and the direction of the effect

will depend on both the score distribution of their student population and the magnitude of their

grade change.

3 Institutional Background

3.1 Standardization of High School Grading Policies

Unlike most states in the U.S., the North Carolina State Board of Education explicitly outlines

grading standards for all public high schools in the state. These standards include grading scales

which reflect the correspondence of numeric scores to letter grades. In the Fall of 2014, the North

Carolina State Board of Education voted to standardize high school grading policies to a 10-point

scale in an effort to increase comparability between school districts and increase the competitive

quality of students applying to colleges.11 Table 1 outlines the specific changes associated with

each letter grade.

As shown in Table 1, the change in letter grade standards created an additional 10-point buffer

at the margin of passing a class. For example, a student taking 9th grade Math I in the 2014-2015

school year would need a 70 or higher to earn credit for the course, while a student in that same

class the following year would instead need a minimum grade of 60. In addition to the 10-point

decrease associated with a passing grade, the lowest numerical value to obtain any letter grade

above an F also decreased with the new grading policy. Thus, this change represents a relaxation

11 Two months prior, the state additionally approved the adjustment of quality point premiums associated with
advanced courses (such as Honors, AP/IB, and college courses) to reflect a maximum GPA of 5.0. In this paper,
we will focus on 9th grade student outcomes, therefore, the relevant policy change is the change in letter grade
standards. See North Carolina’s General Statute 116-11(10a) for more details.
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Table 1: Changes in Academic Course Grades

Letter Grade (Grade Point) Original New

A (4.0) 93− 100 90− 100
B (3.0) 85− 92 80− 89
C (2.0) 77− 84 70− 79
D (1.0) 70− 76 60− 69
F (0.0) 0− 69 0− 59

Notes: The above table displays the changes in grade thresholds as a result of the policy change. The first column displays the
associated letter grade and points (used to calculate GPA) for a given threshold. “Original” refers to the standards mandated
by the state prior to the 2015-2016 school year, and “New” refers to the updated ones. For example, a 91 corresponds to a B
(3.0 grade points) in 2014 and an A (4.0 grade points) in 2016.

in standards at every letter grade value.

Students may also experience changes in grading standards through teacher grading practices.

To assess the extent to which state-mandated changes in grading standards led to changes in grading

practices, Figure 3 displays histograms of 9th grade math course grades for the first year of the policy

(2016) and the year prior (2015). For all letter grade thresholds, these distributions show bunching

just to the right of letter grade cutoffs, especially at the margin of passing a course. The comparison

of 2015 to 2016 histograms shows how the distribution of numerical grades immediately shifted in

response to the 2016 change in grading standards. We take this as evidence that assignment of

grades is endogenous to statewide standards. Taken together, this shows how the new change in

standards generated a real change in grading leniency across all school districts in the state.

Next, we ask how the change in standards shifted students’ grades earned in 9th grade. We do

so by exploring the prevalence of letter grade frequencies for all core academic courses before and

after the policy.12 Figure 4 shows the percentage of letter grades for all core academic courses over

time relative to 2015, the year prior to the North Carolina policy change. This figure shows the

share of A’s earned in core academic courses increased in 2016 by almost 20% and persisted through

2018. Furthermore, the share of F’s obtained decreased by 20% in 2016 compared to the prior year.

The shares of B’s, C’s, and D’s changed substantially less, though all persistently decreased.

Given the stark shift at the top and bottom of the grade distribution shown in Figure 4, we

explore changes in student GPA based on students’ prior performance. We use student 8th grade

math end-of-grade (EOG) exam scores to proxy for incoming academic preparedness. Figure 5

provides the change in GPA for 9th graders relative to 2015 across student academic preparedness.

We report average GPA change for all 9th grade students, 9th graders belonging to the lowest decile

12 We define core academic courses as courses in the subjects of math, English, science, and social studies.
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Figure 3: Distribution of 9th Grade Math Final Course Grades
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Notes: These histograms plot NCERDC transcript-level math grades for 9th graders in 2015 (panel (a)) and 2016 (panel (b)).
Course averages written in red denote the cutoff minimum for each corresponding letter grade; e.g., in the 2014-2015 school
year, a 93 corresponds to the lowest numeric course average which earns a grade of A. We censor grades above 100 to have the
value 100 and omit grades below 50 from the figures. The distribution for other course types follows a similar pattern. See
Figure A.4 for equivalent histograms of an additional pre and post treatment year (2014 and 2017).

of 8th grade math EOG score distribution, and 9th graders belonging to the highest decile. Despite

all students exhibiting immediate gains in GPA, lower achieving students return to pre-policy levels,

while higher achieving students maintain GPA gains over time. Taken together, Figure 5 suggests

that the primary driver of increases in GPA came from the newly relative ease in earning an A,

which translated to GPA gains that were accrued mostly by higher achieving students.

3.2 Minimum Age Requirement for School Entry

The second source of identifying variation used in our research design relies on North Carolina’s

Minimum Age Requirement for school entry. Under North Carolina’s General Statute 115C-364,
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Figure 4: Changes in Letter Grade Shares
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Notes: This figure plots the changes in the proportion of each letter grade earned in core academic courses. We standardize
levels relative to 2015, the last year before the policy change occurred.

Figure 5: Changes in 9th Grade GPA

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

2013 2014 2015 2016 2017 2018 2019

C
ha

ng
e 

in
 G

PA
 (

R
el

at
iv

e 
to

 2
01

5)

Year

Bottom 10%

All Students

Top 10%

Notes: This figure reports relative unweighted 9th grade GPAs in core classes only for students who took the 8th grade math
EOG exam, the most-taken EOG for 8th graders. Approximately 90% of all 9th graders have valid scores. The subsamples of
students listed above respectively refer to those scoring at or below the 10th percentile in the distribution of EOG scores, all
students taking the EOG, and those scoring at or above the 90th percentile. We standardize levels relative to 2015, the last
year before the policy change occurred.

children aged 5 years old before October 17 of that school year are entitled to entry into the

public school system. In practice however, the timing of school entry can be influenced by parents

or caregivers. As a result, not all students are perfectly assigned to cohorts based on North

Carolina’s minimum age requirement rule. Our empirical specification flexibly accounts for this

non-compliance of the kindergarten entry rule to recover a local average treatment effect (LATE)
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estimate of the effect of academic leniency on student outcomes.

4 Data

We rely on rich administrative data on the universe of North Carolina public school students from

the 2013-2014 to 2018-2019 school years provided by the North Carolina Education Research Data

Center (NCERDC).13 These data allow us to capture key information on student learning and

engagement.

To examine the effects of grade leniency on student learning, we draw from student performance

on Math I standardized tests for two reasons. First, Math I is a required course for graduation that

most students take in 9th grade, the first grade for which there are transcripts available. Second,

the state of North Carolina assesses student learning in Math I every school year via the End-

of-Course (EOC) state assessments. Thus, focusing on Math I allows us to observe both student

performance in the class (numeric marks) and well as student learning (test performance).

While prior literature (Hastings, Neilson and Zimmerman, 2012; Jackson, 2018) has used GPA

and absences as proxies for student engagement, our policy mechanically shifts GPA in a way that

may obscure student response. Thus, we analyze student GPA and absences separately, and we

rely primarily on student absences and chronic absenteeism to proxy for student engagement.14

We recover annual GPA from administrative records of high school transcripts from core courses.15

Transcript data include the courses students take, their code, subject, and final numeric mark

obtained. One notable limitation to the data provided by NCERDC is that student birth dates are

anonymized at the month level (see Cook and Kang (2016) for a greater discussion). Given that

our research design relies on the quasi-random assignment of students to cohorts based on their

date of birth, we supplement NCERDC data with restricted-access data on students’ exact birth

dates provided by the North Carolina Department of Public Instruction.

We make several restrictions to our sample for the purposes of precise empirical estimation.

First, we omit students belonging to charter high schools. Charter schools generally have different

courses and can grade students differently. Thus, we omit them from the estimation to ensure

comparability of GPAs across students. Second, we drop students with disabilities from the analysis.

We do this primarily because these students may not participate in standard 9th grade courses

13 Throughout this paper we use the spring term year to refer to each school year.
14 We follow the state’s definition of chronic absenteeism as being absent 10% or more of the days in the school, which

translates to 18 days.
15 We define core academic coursework as ELA, Math, Science, and Social Studies
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Table 2: Descriptive Statistics

Regression Discontinuity Sample Full Sample

(1) (2) (3) (4)
2015 9th graders 2016 9th graders 2015 9th graders 2016 9th graders
−2 mo. Oct. 17 +2 mo. Oct. 17 All All

Demographic
Female 0.521 0.503 0.517 0.513

(0.500) (0.500) (0.500) (0.500)
White 0.470 0.458 0.477 0.467

(0.499) (0.498) (0.499) (0.499)
Asian 0.020 0.019 0.019 0.020

(0.140) (0.136) (0.137) (0.138)
Black 0.274 0.290 0.287 0.285

(0.446) (0.454) (0.452) (0.451)
Hispanic 0.177 0.174 0.157 0.171

(0.382) (0.380) (0.364) (0.377)
Other 0.059 0.058 0.060 0.058

(0.236) (0.234) (0.237) (0.234)
Socioeconomic
EDS 0.719 0.726 0.714 0.715

(0.450) (0.446) (0.452) (0.452)
Rural 0.540 0.528 0.539 0.529

(0.498) (0.499) (0.498) (0.499)
Academic
LEP 0.067 0.053 0.057 0.054

(0.250) (0.224) (0.232) (0.225)
Gifted (Math) 0.038 0.045 0.040 0.040

(0.191) (0.208) (0.196) (0.196)
Gifted (Reading) 0.038 0.049 0.039 0.044

(0.192) (0.216) (0.194) (0.205)

N 10,479 10,140 57,458 61,589

Notes: This table shows descriptive statistics of student demographic, socioeconomic, and academic characteristics. Columns

(1) and (2) present descriptive statistics of the sample used in our regression discontinuity estimation. Columns (3) and (4)

present descriptive statistics for all 2015 and 2016 9th graders in the state.

required for graduation, such as Math I. Next, we remove students retained in the 9th grade but

keep students retained in any other grade. Doing so eliminates the possibility for students close

to the birth date cutoff to be considered both non-treated (9th grader in year t) and treated (9th

grader in year t + 1). Lastly, we restrict the analysis to those students with a valid Math I test

score.16

Table 2 presents an overview of the data used in our analysis. Columns (1) and (2) present

16 Despite testing the concepts covered in a traditional 9th grade math course, only 66% of Math I EOC test takers
belong to the 9th grade. In 2015 and 2016, 27% of test takers were in the 8th grade, while 6% were in the 10th
grade. As a result, this restriction drops nearly 40% of 9th graders, most of whom took the exam in the 8th grade.
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descriptive statistics of the sample used in our regression discontinuity estimation. Students in

column (1) make up our counterfactual group. They have birth dates just to the left of the cutoff

and are therefore assigned to the 2015 9th grade cohort. Conversely, students in column (2) have

birth dates just to the right of the cutoff and are assigned to the 2016 9th grade cohort, the first

to experience more lenient grading. Columns (3) and (4) present descriptive statistics for all 2015

and 2016 9th graders in the state. Overall, statistics shown in Table 2 demonstrate a balance of

student characteristics between treatment and comparison groups of our regression discontinuity

sample.17 When comparing students in our regression discontinuity sample to those of the whole

state (columns (3) and (4)), we see that students close to the bandwidth are similar in their

observable characteristics to the state average. While we still maintain a local interpretation of our

treatment effects, we emphasize that the local sample is highly characteristic of the population of

interest. Finally, a comparison of statistics between columns (3) and (4) suggest strong balance

across the two 9th grade cohorts of interest.

5 Research Design

Identifying the causal effect of academic leniency is challenging for several reasons. First, the

relaxation of stringent standards often occurs gradually over time. Year-to-year changes in how

grades are allocated tend to be small, if not completely indiscernible. This means that testing

for sizeable effects related to grade inflation requires a large enough panel to capture observable

differences in the distribution of grades and student achievement. A simple comparison of cohorts at

either end of a sufficiently large panel would exhibit bias induced by unobserved time trends. These

trends may also induce a response in student behavior unrelated to—and misattributed to—changes

in academic standards. To circumvent this issue of an incremental change in de facto leniency, we

exploit the roll-out of the new grading policy in North Carolina. This policy explicitly outlined how

schools would distribute letter grades and did so abruptly from one year to the next. Importantly,

the immediacy in which the policy was announced, approved, and implemented provides us with

two comparison groups that are likely unaffected by spurious time trends.

A second important issue to consider when analyzing the effects of academic standards is the

fact that districts might differ in their explicit grading schemes (e.g., the relative course average

needed to earn a letter grade of A) or their leniency conditional on the scheme (e.g., the share

17 See Section 7 for formal tests of covariate smoothness across the threshold.
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Figure 6: First Instance of Non-Compliance Among Non-Compliers
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Notes: We condition on being a delayed student (relative one’s age and North Carolina law) in 9th grade. Here, we include
only students with North Carolina administrative records for every year available. The rates do not change considerably when
focusing instead on students who, e.g., first appear in the data in the sixth grade. In fact, 86.2% of delayed ninth graders who
first enter the panel in grade six exhibit delay in grade six, compared to 86.9% in the figure above.

of A’s given). The universality of the North Carolina policy addresses this first concern directly.

Each district in North Carolina was mandated to follow the 10-point scale, regardless of the scale

they utilized during the previous academic year. However, we find no evidence to suggest that any

district operated on a grading scale other than the 7-point scale in the year prior. Put together, this

provides us with state-wide variation in explicit academic standards that all students experience in

the same way. While this policy design does not account for differences in between-district levels

of leniency, the inclusion of district-level fixed effects in an estimating regression does.

The third and final challenge, which the policy alone cannot address, is selection into academic

cohorts. Deming and Dynarski (2008) show that parents’ incentives to “red-shirt” their children

has risen over time. This process delays a child’s entry into kindergarten with the intended goal of

providing them with age advantages during their time in the public school system. The selection on

gains induced by this decision has the potential to bias our estimates, especially if parents’ strategic

incentives differed substantially between the two cohorts of interest. Related to this, our focus on

9th grade students requires consistent matriculation across grades, especially during the transition

from middle school to high school. We find evidence of the contrary. In fact, as evident in Figure 6,

a large, discontinuous mass of students are held back in 8th grade relative to the rate in any earlier
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grade. While we cannot distinguish why students experience an additional year in the 8th grade,

this selection into delayed 9th grade matriculation introduces a potential non-compliance problem

when estimating the effect of the policy. For this reason, a direct comparison of outcomes between

the treated (the first cohort to experience the 10-point scale) and the non-treated (the last cohort to

experience the 7-point scale) will be distorted by endogenous selection bias. To overcome this, we

construct a mechanism which randomly allocates students either to the lenient or the strict policy

by combining the timing of the implementation with North Carolina’s minimum age requirements

for school entry.

The two cohorts we compare faced the same kindergarten entry rule: if a child turns 5 before

October 17, they may enter the public school system that year; otherwise, they are delayed entry

and must enroll in the subsequent year. This assignment rule can be extended to high school

entry, adjusting for probabilistic differences attributable to retention. Conditional on a smooth

distribution of birthdays, assignment to high school entry year is then as good as random for a

small bandwidth of birthdays around the cutoff. The selection into academic cohorts outlined

previously leads us to estimate a fuzzy regression discontinuity design, or two-stage least squares

(2SLS) model, which adjusts for the level of non-compliance and recovers estimates which carry a

causal interpretation (Hahn, Todd and Van der Klaauw, 2001).

Formally, we estimate the following 2SLS specification,

dij = δ0 + δ11{bi≥0} + g(bi) + δ′xi + αj + ηij (2)

yij = γ0 + τ d̂ij + g(bi) + γ ′xi + αj + εij , (3)

where i indexes students and j indexes school districts. The variable dij is a treatment indicator

that takes on the value 1 if student i belongs to the first cohort to experience the 10-point scale, 0

if they belong to the last cohort to experience the 7-point scale. The running variable bi represents

the relative distance from student i’s birth date to the North Carolina entry cutoff of October 17,

which we standardize to 0. As such, 1{bi≥0} is an indicator for whether the birthday of student

i is to the right of the kindergarten entry rule and g(·) is a flexible polynomial in the birth date

of students at both sides of the cutoff. The vector of student-level covariates, xi, includes stu-

dent demographic characteristics and socioeconomic characteristics. To control for any unobserved

district-level effects, we include district fixed effects in αj . The variable yij denotes any outcome

of interest, such as GPA, test scores, and attendance. The residualized decision rule is captured
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by d̂ij and iid idiosyncratic error in each stage is denoted, respectively, by ηij and εij . Given this

framework, our parameter of interest is τ , which captures the local average treatment effect of

being randomly assigned to the lenient academic standard. Due to our use of a discrete running

variable with a small number of possible values, we follow Kolesár and Rothe (2018) and Armstrong

and Kolesár (2020) in estimating honest confidence intervals from a fuzzy regression discontinuity

design without covariates.18 We then construct the same estimator under a 2SLS framework and

introduce covariates and fixed effects to obtain our fully-specified model. Our results are robust

to specification level. In each specification, we estimate local linear regressions with a triangular

kernel density as outlined in Fan and Gijbels (1992) and report robust standard errors.

Several studies in the economics of education utilize date of birth in a similar fashion, beginning

with Angrist and Krueger (1991) and extending to include Elder (2010), Navarro-Palau (2017), Dee

and Sievertsen (2018), Ordine, Rose and Sposato (2018), and Persson, Qiu and Rossin-Slater (2021).

Outside of the context of education, exact-date-of-birth RDDs have been used to study the effects

of vaccine eligibility (Humlum, Morthorst and Thingholm, 2022), access to Medicare (Goldsmith-

Pinkham, Pinkovskiy and Wallace, 2021), and retirement reform on household retirement decisions

(Stancanelli, 2017), to name a few. Our design most closely matches Cook and Kang (2016), who

utilize kindergarten entry cutoffs to measure longer-run outcomes like middle school test score

performance and the propensity to commit crime. We build on this earlier work by combining the

birthday RD design with the exogenous timing of a policy change, which allows us to identify the

causal effect of the policy directly.

6 Results

In this section, we present regression discontinuity estimates of Equation 3 for North Carolina

9th graders. First, we present evidence of treatment in Section 6.1. Then, we present causal effect

estimates of increased grade leniency on student academic and engagement outcomes in Section 6.2.

Finally, we presents longer-run effects in Section 6.3.

18 For completeness, we report the rest of the Armstrong and Kolesár (2020) procedure and our related assumptions.
We assume the parameter space corresponds to a second-order Hölder smoothness class, bounding second derivatives
globally by a constant Ks for stage s. In determining the value of K := (K1,K2), we run quadratic regressions on
the left-hand side of the cutoff for a large, viable window of the running variable, which we establish as 70 days. We
then estimate di = λ0 + λ1bi + λ2b

2
i + e1i under the restriction bi ∈ {−70, ...,−1} and set K1 = 4|λ̂2|. Similarly, we

estimate yi = µ0 + µ1bi + µ2b
2
i + e2i and then set K2 = 4|µ̂2|. Our results are not sensitive to the selection of K, as

shown in Table A.1.
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6.1 Evidence of Treatment

Before presenting the main estimates, we provide evidence to establish how birth date affects

assignment to the first treated cohort that experienced the new grading policy in North Carolina.

Under our regression discontinuity design, we argue that kindergarten entry rules randomly assigned

students to the first cohort to experience explicit academic leniency. Crucial to our identification

strategy is the power of these entry rules in the assignment of students into cohorts.

Figure 7 plots the likelihood of entering high school in 2015 based on student distance to the birth

date cutoff. This figure shows a strong discontinuity at the cutoff, of approximately 45 percentage

points, on the probability of assignment to the first treatment cohort. This result establishes the

relevance of our research design.

Figure 7: Discontinuity in High School Entry
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Notes: The above figure plots the discontinuity in the probability of entering high school in 2015 for students born in the
fall of 2000. The threshold corresponds to October 17, the kindergarten entry cutoff in North Carolina. This discontinuity is
consistent with discontinuities of cohort assignment in other comparison years (see Table A.3).

The discontinuity presented in Figure 7 is not sharp, which suggests that some students either

do not comply with state-mandated kindergarten entry rules or are retained prior to 9th grade.

We interpret non-compliance as a combination of both parents requesting waivers to delay their

child’s entry date for kindergarten and students undergoing retention.19 Among 9th grade students

19 School entry and progression is ultimately a choice of parents or caregivers. Figure A.1 presents a decision tree that
illustrates how non-compliance can come about.
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who did not comply with the kindergarten entry rule, 86% are non-compliant by 3rd grade, which

indicates that student non-compliance is not primarily driven by 9th grade policy. However, the

discontinuous jump in retention, coupled with the evidence of non-compliance in Figure 7 validates

our need to instrument for student selection into academic cohorts.

6.2 Causal Effects on 9th Grade Student Outcomes

We first examine the effects of grading leniency on student GPA, which is a direct outcome of the

policy change. However, interpreting effects on student GPA is challenging because any change in

GPA could reflect both the mechanical increase driven by the policy and/or true student response.

Thus, we further explore effects on student learning and student engagement through student Math

I EOC scores and absences. We provide visual evidence of discontinuities around the cutoff for each

of these outcomes in Figure 8. These plots suggest that more lenient grading standards led to higher

student GPAs and higher absences.

Table 3 presents estimates of Equation 3 for these student outcomes. These estimates indicate

that increased grade leniency resulted in an increase of approximately 0.266 GPA points. This

boost in GPA corresponds to an 11% increase. Changes in student GPA can reflect changes in

student effort as well as mechanical increases driven by the policy. To understand the extent

to which this mechanical effect likely increased GPAs, we draw from pre-treatment (2015) student

numeric grade data and recover a simulated GPA using the new grading scale (2016). The difference

between actual and simulated GPA measures helps us understand how GPA would change in the

absence of student/teacher response.20 This difference is estimated to be 0.298 points.21 Given how

close our regression discontinuity estimate is to this simulated change, we interpret the regression

discontinuity effects as mechanical, rather than a reflection of true student response. Estimates in

column (2) of Table 3 further support this interpretation, as they indicate that increases in GPA

were not accompanied by greater student achievement in Math I EOC scores.

Finally, estimates for student absences in columns (3) and (4) indicate that increased grade

leniency led students to become more absent in school. Students to the right side of the birth date

cutoff are, on average, 1.3 days more absent in school, than students just to the left side of the

cutoff. This corresponds to a 20% increase in school absences. Estimates of the effects on chronic

20 Under the assumption that, in the absence of the new grading policy, post-treatment numeric grade distributions
would have been similar to pre-treatment ones.

21 This is likely an underestimate, with the true mechanical value exceeding 0.3 points. A non-negligible portion of
transcripts in the data report course grades as letters instead of the numeric average, meaning we cannot re-scale
these grades in the simulation.

23



Figure 8: Changes in 9th Grade Outcome Across Birth Date Cutoff
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Notes: This figure shows discontinuities in 9th grade unweighted GPA, Math I EOC scores, 9th grade absences, and the
likelihood of 9th grade chronic absence (panels (a), (b), (c), and (d)). All panels are created by plotting the average outcomes
across each birth date and fitting the data using a polynomial of degree zero on either side of the cutoff, which yields mean
smoothing local to the cut point side. For each outcome, we fix the bandwidth to match the optimal one estimated using the
procedure outlined in Section 5. In an effort to match the honest confidence interval detailed in Armstrong and Kolesár (2020),
we set the confidence level to 97.07% for the bands displayed.

absenteeism rates indicate that increases in school absences seem to be driven by students on the

upper tail of the absences distribution, as threshold crossing increases student chronic absenteeism

rates by 0.048 points.

The model presented in Section 2 shows how differences in costs and returns to effort across

students of different levels of academic preparedness can generate differential response to changes

in grading standards. Descriptive statistics presented in Section 3 further support this claim by

showing important differences in the ways that increased grading leniency affected high and low

achieving student groups. We unpack the main results of this paper by exploring heterogeneous
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Table 3: Regression Discontinuity Estimates for 9th Grade Outcomes

(1) (2) (3) (4)
Core Academic Math I EOC Score Total Number Probability of

Grade Point Average (Standardized) of Days Absent Chronic Absence

10-Point Scale 0.266 0.063 1.324 0.048
(0.071) (0.089) (0.616) (0.020)

97.07% CI (0.111, 0.420) (-0.130, 0.257) (-0.019, 2.667) (0.003, 0.093)
1st Stage Estimate 0.434 0.431 0.434 0.434
Mean (Left) 2.436 0.108 6.479 0.059
Bandwidth 46.27 35.65 46.24 49.96
Observations 13,304 10,122 13,304 14,189

Notes: Means to the left are calculated manually over a bandwidth range {−h∗, ...,−1}, where h∗ is the MSE-optimal

bandwidth. We report 97.07% confidence intervals to align with the honest critical value of 2.18 outlined in Armstrong and

Kolesár (2020). Results come from regressions which include controls and district fixed effects. The covariates used include

indicators for gender, race/ethnicity, socioeconomic status, and gifted status in reading and math.

response to treatment across students with different levels of prior academic preparedness in Ta-

ble 4.22 To approximate prior academic preparedness, we split our sample of 9th graders into two

groups based on their 8th grade Math EOG performance in panel A of Table 4.23 Differences across

these two groups are statistically significant for all outcomes. These estimates suggest that gains

in GPA are driven mostly by gains from students on the upper end of the test score distribution.

Students with 8th grade test scores above the median see an increase in GPA of 0.296 points, while

students below the median see no gains in GPA.

This finding is striking for two reasons. First, the policy mechanically increases GPA for all

students regardless of their position in the numeric grade distribution. Second, since the change in

letter grade standards created an additional 10-point buffer at the margin of passing a class (see

Table 1), a priori, we would expect this policy to boost GPA for lower achieving students the most.

In fact, estimates of simulated changes in GPA for students on the lower end of the distribution

yield a mechanical increase of 0.341 points. This change is estimated to be 0.250 points for students

on the upper end of the distribution. Thus, taken together, null GPA effects for students on the

lower end of the test score distribution imply that student effort response for this group is such

that it completely offsets a mechanical increase that was likely to benefit them the most.

Estimates for absences further support this claim. These results suggest that estimated increases

in absences recovered in Table 3 are driven by students on the lower end of the test score distribution.

22 We present results across student gender, race, and SES in Table A.4. Differences across these subgroups are not
statistically significant for any outcome.

23 91% of 9th graders in our sample have a valid 8th grade Math End-of-Grade (EOG) exam.
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Table 4: Effects Across Prior 8th Grade Math EOG

(1) (2) (3) (4)
Core Academic Math I EOC Score Total Number Probability of

Grade Point Average (Standardized) of Days Absent Chronic Absence

Low Ability 0.065 -0.126 2.584 0.092
(0.093) (0.103) (0.980) (0.032)

High Ability 0.296 -0.111 0.373 0.024
(0.090) (0.112) (0.773) (0.026)

Notes: We fix the bandwidth for each specification to be the same as in the full sample version. We present results

from regressions which include covariates and district fixed effects. Heteroskedasticity-robust standard errors are

reported in parentheses beneath each point estimate.

Students with 8th grade test scores below the median see an increase in absences of 2.6 days, while

students above the mean experience no change. Thus, greater grade leniency leads lower achieving

students to decrease their engagement in school, undoing any mechanical gains in GPA introduced

by the policy, while higher achieving students see all the gains of the policy without significant

changes in their effort allocation.

6.3 Longer-Run Effects

We provided evidence that grade leniency differentially impacted students of varying levels of prior

academic preparedness during the first year of the policy’s implementation. This section explores

whether these differences compound over time. On one hand, the initial exposure to this policy

could have caused gaps which subsequently disappeared as students adjusted to the new grading

standard. On the other hand, gaps may widen each year if the effects of the policy generated lasting

changes in the education trajectories of students. If the latter proves to be true, it would suggest

that academic leniency and grade inflation can exacerbate achievement gaps and lessen human

capital accumulation for students already at a deficit. We explore this by following our cohort of

9th graders for three additional years through high school completion.24

Figure 9 presents estimates of effects for years 1 through 4 for student GPA, absences, and

chronic absenteeism. Year 1 estimates correspond to the estimates presented in Table 3. We do not

include estimates of student test performance because Math I is only tested in 9th grade (year 1).

There are two main takeaways from Figure 9. First, initial increases in GPA driven by the policy

immediately fade away after year 1 for all students. This is in line with the interpretation that

24 Notice that for this analysis we focus on years of high school after 9th grade rather than grades. We do so to
account for remedial students who must repeat grades. Focusing on years rather than grades allows us to include
these students in the estimation of longer-run results of exposure to more lenient grading standards.
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Figure 9: Effects Throughout High School, by Ability
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Notes: Each bar represents the coefficient from a fully-specified 2SLS model for the listed outcome of interest. Bars
capture the 95% honest confidence intervals outlined in previous sections. See Table A.5 for the table version.

the GPA boost recovered in Table 3 is driven mostly by a mechanical policy change rather than

a reflection of student response in terms of effort and engagement in school. Second, the effect of

increased student absences and chronic absenteeism persist and compound over time for students

on the lower end of the test score distribution.

Given this compounded effect on absenteeism for students on the lower end of the test score

distribution, we explore potential repercussions on economically relevant student outcomes such

as ACT scores, dropping out of high school, graduating high school on time, and intention to

enroll in college in Table 5. While we see no effects on any outcome for the full sample (column

(1)), heterogeneous effects by pre-treatment achievement (columns (2) and (3)) suggest that grade

leniency decreased ACT achievement for students on the lower end of the test score distribution.

At the same time, it also led to marginal increases in high school graduation, which is consistent

with grade inflation.

We highlight an important feature of these long-term comparisons that arises from treatment

dosage. Recall that our research design compares students who happen to belong to the first cohort

of 9th graders exposed to more lenient grading because their birth date was just to the right of the
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Table 5: Estimates for Longer-Run Outcomes of Academic Achievement

Grade 8 Math EOG

(1) (2) (3)
Full Sample Below Median Above Median

ACT Score -0.075 -0.857 -0.335
(0.370) (0.404) (0.559)

Drop Out 0.002 -0.003 0.007
(0.005) (0.008) (0.006)

Graduate 0.014 0.044 -0.006
(0.019) (0.025) (0.029)

College Intent 0.012 -0.023 0.003
(0.033) (0.049) (0.045)

Notes: We present results from regressions which include covariates and district

fixed effects. Heteroskedasticity-robust standard errors are reported in parentheses

beneath each point estimate. The respective optimal bandwidth for each outcome is

31, 40, 41, and 48 days.

kindergarten entry cutoff, to students whose birth date was just to the left. For 9th grade outcomes

(year 1), this means that our treatment group received lenient grading while our counterfactual

group received more stringent grading in 9th grade. Comparisons for years 2 and above, however,

do not recover the effect of 2 or more years of lenient grading. Instead, because the policy impacts

all students in the school system once implemented, these comparisons estimate the causal effect of

an additional year of exposure to academic leniency. Given this, they are are likely a conservative

estimate for the underlying long-term effects.25

7 Internal Validity

The causal interpretation of our results depend on several assumptions related to the research

design’s validity. In this section, we provide four tests to validate this design and provide assurance

of both the point estimates we recover and their interpretation.

7.1 Manipulation of the Running Variable

The validity of a regression discontinuity design fails whenever agents can plausibly manipulate the

running variable and their likelihood of receiving treatment (McCrary, 2008). In our setting, this

could take two forms. First, parents may strategically “red-shirt” their children in kindergarten

25 For example, our year 2 estimates effectively compare 10th grade outcomes for 10th graders who received 2 academic
years of lenient grading with 10th graders that received just one.
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to guarantee they begin school as one of the oldest in their class (Bassok and Reardon, 2013).

Second, parents could strategically retain their students if they had prior knowledge of the policy

and wanted their student to experience lenient academic standards sooner.

We formally test for manipulation using the procedure outlined in Cattaneo, Jansson and Ma

(2018), which estimates a local polynomial density on either side of the cutoff and tests for the

null hypothesis that the limit of both functions as they approach the cutoff from either side are

equal. Using a 60-day bandwidth, the test yields an associated p-value of 0.165. Thus, we fail to

reject the null hypothesis that the density functions are equal at the cutoff and find no evidence of

systematic manipulation of the running variable. Visual evidence presented in Figure 10 shows a

smooth distribution of birthdays around the kindergarten entry cutoff, which further supports this

finding.

Figure 10: Distribution of Birth Dates Around the Cut Point
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Notes: For visual ease, we bin birth dates in groups of two. Given that we plot 60 days on either side of the cutoff,
we then display 30 bars in the figure above on both the left and right of 0.

With these results in mind, we proceed under the assumption that birth dates exogenously sort

students to a kindergarten entry year, which maps almost directly to when they begin high school.

As a result, student birth date is a valid instrument for our setting.
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7.2 Covariate Smoothness

We next test for covariate smoothness across the threshold. Our empirical analysis functions as

a quasi-experiment only if observable attributes of students trend smoothly at the boundary of

kindergarten entry assignment. As an example, our assumption of random assignment fails if

economically disadvantaged students disproportionately comply with the assignment mechanism

relative to non-economically disadvantaged students. If this were the case, the comparison of

students just to the left and just to the right of the cutoff would additionally capture socioeconomic

effects, biasing and eliminating any causal interpretation of our results.

Table 6 presents the regression discontinuity results for student characteristics under three

separate specifications.26 In Panel A, we conduct the same two-part estimation procedure outlined

by Kolesár and Rothe (2018) and Armstrong and Kolesár (2020) to obtain optimal bandwidths and

honest confidence intervals. Unlike our main analysis, these tests contain no other covariates. The

average optimal bandwidth among the covariates using this procedure is about 40 days. To test for

bandwidth sensitivity, we repeat the analyses with a smaller fixed bandwidth (h = 20, presented in

Panel B) and a larger fixed bandwidth (h = 60, presented in Panel C). For nearly every covariate, we

find no evidence to suggest discontinuity around the threshold. Panel A finds small discontinuous

jumps at the 5% level for female students and black students, but these discontinuities disappear

for small adjustments to the bandwidth. Put together, we take these results to suggest that our

assignment mechanism operates identically for different groups of North Carolina students.

7.3 Confounding Age Effects

Our third validity test examines whether any underlying age effects drive our results. The use

of birth date as a running variable has the potential to introduce age effects from the fact that

students to the right of the cutoff are older than students to the left by construction of the design.

In primary school, this age advantage has meaningful effects (Dobkin and Ferreira, 2010; McCrary

and Royer, 2011). If this effect persists through secondary schooling, then our parameter of interest,

τ , may take the form τ := τP + τage, where τP is the isolated effect of the policy and τage is the

effect induced by age advantage.

26 Figure A.3 presents analogous visual evidence using a simple linear fit over a binscatter of the relevant covariates
across a 60-day bandwidth.
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Table 6: Fuzzy RD Results for Demographic Characteristics with Varying Bandwidths

Female White Asian Black Hispanic EDS Rural LEP AIGM AIGR

Panel A: h = h∗

Born after Oct. 16 -0.136 0.086 -0.000 -0.127 0.015 -0.041 -0.022 0.008 0.032 0.029
(0.044) (0.047) (0.012) (0.053) (0.037) (0.042) (0.039) (0.021) (0.018) (0.017)

95% Honest CI (-0.233, -0.039) (-0.016, 0.189) (-0.027, 0.026) (-0.243, -0.011) (-0.065, 0.094) (-0.133, 0.052) (-0.108, 0.064) (-0.039, 0.054) (-0.007, 0.071) (-0.008, 0.067)
1st Stage Estimate 0.439 0.439 0.437 0.425 0.437 0.440 0.442 0.436 0.441 0.442
Mean (Left) 0.534 0.481 0.021 0.273 0.166 0.700 0.539 0.057 0.041 0.042
Bandwidth 41.89 37.59 34.52 25.96 34.60 39.36 55.29 31.38 40.00 53.73

Panel B: h = 20

Born after Oct. 16 -0.127 0.051 0.007 -0.112 0.039 -0.051 -0.026 0.022 0.047 0.026
(0.067) (0.067) (0.016) (0.061) (0.049) (0.062) (0.068) (0.027) (0.024) (0.030)

95% Honest CI (-0.258, 0.004) (-0.081, 0.183) (-0.024, 0.038) (-0.236, 0.011) (-0.058, 0.136) (-0.174, 0.071) (-0.160, 0.109) (-0.032, 0.075) (-0.001, 0.095) (-0.032, 0.085)
1st Stage Estimate 0.425 0.425 0.425 0.425 0.425 0.426 0.429 0.434 0.428 0.428

Panel C: h = 60

Born after Oct. 16 -0.101 0.070 -0.009 -0.058 0.007 -0.017 -0.023 -0.025 0.026 0.030
(0.037) (0.037) (0.009) (0.033) (0.028) (0.034) (0.038) (0.015) (0.015) (0.016)

95% Honest CI (-0.206, 0.003) (-0.050, 0.190) (-0.045, 0.027) (-0.244, 0.127) (-0.092, 0.107) (-0.121, 0.087) (-0.109, 0.063) (-0.092, 0.041) (-0.020, 0.071) (-0.008, 0.067)
1st Stage Estimate 0.439 0.439 0.439 0.439 0.439 0.440 0.442 0.441 0.441 0.441

Notes: We restrict the sample to students with valid measures for the Math I EOC. Estimates presented follow the fuzzy regression discontinuity methods outlined in

Kolesár and Rothe (2018). We report robust standard errors in parentheses. 95% honest confidence intervals are given beneath these estimates, utilizing a critical value of

2.18. Students classified by North Carolina as economically disadvantaged fall under the category “EDS”. The column “Rural” captures rurality measured at the school level

and “LEP” refers to whether a student is limited English proficient. The AIG variables denote whether the student is academically gifted in elementary math and reading,

respectively.
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Table 7: Comparison in Estimates for Placebo Sample

Panel A: Reproduced Main Analysis

(1) (2) (3) (4)
Core Academic Math I EOC Score Total Number Probability of

Grade Point Average (Standardized) of Days Absent Chronic Absence

10-Point Scale 0.266 0.063 1.324 0.048
(0.071) (0.089) (0.616) (0.020)

97.07% CI (0.111, 0.420) (-0.130, 0.257) (-0.019, 2.667) (0.003, 0.093)
Observations 13,304 10,122 13,304 14,189

Panel B: Placebo Analysis

10-Point Scale 0.025 0.025 0.838 0.039
(0.080) (0.082) (0.447) (0.019)

97.07% CI (-0.148, 0.199) (-0.155, 0.204) (-0.137, 1.812) (-0.004, 0.081)
Observations 10,151 11,092 18,930 13,139

Notes: Means to the left are calculated manually over a bandwidth range {−h∗, ...,−1}, where h∗ is the MSE-optimal

bandwidth. We report 97.07% confidence intervals to align with the honest critical value of 2.18 outlined in Armstrong and

Kolesár (2020). The covariates used in panels C and D include indicators for gender, race/ethnicity, socioeconomic status, and

gifted status in reading and math.

Our estimates for τ should be unbiased measures of τP if τage = 0. While we cannot disentangle

this possible effect from our desired effect in the analysis sample, we circumvent this identification

issue by applying an identical analysis on a placebo sample of North Carolina students. Formally,

for a placebo group of students, we estimate the effect of delayed kindergarten (subsequent high

school entry) on our four outcomes of interest: GPA, test scores, number of days absent, and

the likelihood of chronic absence. We minimize the potential for unobserved heterogeneity to bias

our placebo estimates by choosing the closest two-year cohort to our actual cohort of interest. In

practice, we repeat the estimation procedure for the sample of students in North Carolina born

one year prior to our main analysis birth cohort. These students, if delayed, begin high school one

year before the policy was introduced. The “control” group in this analysis begins high school two

years before the introduction of the lenient grade standards. Given that both treatment and control

groups in this placebo comparison are exposed the the same grading standards, any estimate τ ̸= 0

would suggest that τage ̸= 0.

Table 7 displays the results from this placebo analysis. In Panel A, we reproduce the main

results for ease of comparability. Our results suggest that age effects do not bias our estimates. For

each outcome, we find null results at the 5% level using the honest confidence interval method used

for the main results of the paper (Kolesár and Rothe, 2018). Given that this comparison group

32



enters high school one year prior to our analysis group, we do not expect any other possible effects

attributable to our RD design to bias our estimates.

7.4 Changes in Education Production Inputs

Our final internal validity check explores the role of external time-varying factors that may enter at

the school level and potentially bias our student-level estimates. We focus on one of the most impor-

tant inputs to the production of education which meaningfully impact gains in student achievement

and engagement: teacher quality (Chetty, Friedman and Rockoff, 2014; Jackson, 2018). A shock

to teacher quality at the same time as the introduction of the policy would distort the estimated

effects associated with academic leniency.

To obtain information on teacher characteristics, we link students in our analytical sample to

Math I teachers using course membership files. NCERDC course membership files contain records

of the teacher who taught a particular course and the students that took that course in any given

school year which allows for a straightforward match of students to teachers.27 Overall, we are

able to match 96% of the students in our analytical sample to a teacher record from the course

membership files.28

Table 8 presents regression discontinuity estimates of teacher characteristics, namely education

and experience. Overall, we do not recover any meaningful difference in teacher characteristics for

students above and below the birth date cutoff. Given that we find no evidence to suggest that

the estimated effects of grade leniency recovered in Section 6 are driven by teacher quality, we

conclude this section by extending the interpretation as one which rules out time varying changes

in educational inputs as a general source of contamination in our estimation procedure. With these

validity tests in mind, we take our results as capturing the true underlying effect of the lenient

policy for the local sample of students born near the relevant cut date.

27 Course membership files are available starting in the 2005-06 school year. Before 2006, researchers relied on the
School Activity Report (SAR) files to link students to teachers. The SAR files contain information on school
personnel that may be linked to student test score data via the information on the person monitoring the exam.
One of the main limitations of this linking procedure is that it is not possible to establish whether the teacher listed
in a student’s test score record was actually that student’s teacher for that test subject. Course membership records
greatly improve student-to-teacher linking as they contain information on the teacher who taught each particular
course. However, the only information identifying teachers in the course membership data is a single teacher name
variable, unlike the SAR personnel data, which includes formatted first, last names, and social security numbers.
As such, approximately 80% of teachers in course membership files can be matched to SAR data files. For more
information see NCERDC Technical Report 1B and Technical Report #5.

28 Some students (10%) take multiple Math I courses with more than 1 teacher in the same school year. This is mostly
driven by students taking Math I in the Fall and Spring terms with different teachers. For these students, we use
the characteristics of the Fall term teacher in our estimation.
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Table 8: Testing for Differences in Educational Inputs

(1) (2) (3)
Bachelor’s Degree Advanced Degree High Experience

10-Point Scale -0.039 0.037 0.057
(0.044) (0.044) (0.037)

97.07% CI (-0.135, 0.056) (-0.059, 0.133) (-0.023, 0.136)
1st Stage Estimate 0.440 0.440 0.438
Mean (Left) 0.706 0.289 0.492
Bandwidth 38.58 37.94 62.70
Observations 10,507 10,298 17,272

Notes: High experience denotes whether a teacher has more than 9 years of teaching experience (the median

value of teaching experience in the data). Means to the left are calculated manually over a bandwidth range

{−h∗, ...,−1}, where h∗ is the MSE-optimal bandwidth. We report 97.07% confidence intervals to align with

the honest critical value of 2.18 outlined in Armstrong and Kolesár (2020). Results come from regressions which

include controls and district fixed effects. The covariates used include indicators for gender, race/ethnicity,

socioeconomic status, and gifted status in reading and math.

8 Conclusion

The economic benefits of high school graduation are large and persistent, which has led local

governments across the country to enact policy with the explicit goal of increasing graduation

rates. One popular mechanism designed to boost the performance of low-achieving students is to

relax stringent academic standards to help students meet graduation requirements and obtain a

high school degree. As a result, the last decade has seen steady increases in graduation rates and

grade point averages in US high schools without any measured increase in student achievement. At

face value, a decline in academic standards can naturally lead to more equitable outcomes since a

larger share of students meet graduation requirements and obtain a high school diploma. However,

this simplified view ignores the possible endogenous role that academic standards have on student

investment in school, which directly impacts their accumulation of human capital.

We show, theoretically and empirically, that the decision to lower standards may result in the

unintended consequence of expanding gaps in academic achievement if student effort response is

such that it offsets designed gains for low ability students. Under a fuzzy regression discontinuity

research design that leverages variation from statewide grading policy and school entry rules, we

find that increased academic leniency led to mechanical GPA gains among high ability students,

but large effort reductions among low ability students. These heterogeneous effects compound over

time and exacerbate gaps in student ACT performance. Therefore, the short-run gains of artificially
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raising high school completion rates may result in a permanent widening of long-run welfare gains,

especially when lowered standards are not associated with any relative increase to human capital

accumulation.

Our analysis is policy relevant for educators and policymakers seeking to change academic stan-

dards in their school districts. The findings of this paper highlight the importance of understanding

how policy can shift incentives for effort of students, with the potential for heterogeneous effects

across student populations. Our analysis shows how student response to incentives generated by

shifts in education policy, not only can undo designed gains, but can exacerbate gaps if response is

heterogeneous across student groups.
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A Appendix

A.1 Timeline and Compliance to Kindergarten Entry Rules

Figure A.1: Pathway to Treatment Status for Analysis Group

Notes: In the above, h∗ denotes the MSE-optimal bandwidth generated by the honest RD method outlined in Kolesár and

Rothe (2018).

We present the timeline of some analysis sample student i’s life cycle in public school in Figure A.1.

We denote non-treated students (in blue) as those who enter high school in year 2015 and treated

students (in red) as those instead entering in 2016. As evident by the figure, there are numerous

opportunities for students to become non-compliers. In North Carolina, parents can request waivers

for their child to start kindergarten one year after the law requires, given sufficient reasoning.

Some districts also require that students perform sufficiently well on a kindergarten pre-test before

granting the waiver.

However, students fully complying with the kindergarten entry rule may still become non-

compliers in our analysis. Because treatment status refers to the year a student begins the 9th

grade, any student retained between kindergarten and eighth grade incurs a shifted treatment

status.

We find that 29.42% of students born at most six months before October 17th do not comply

with the state’s cutoff rule. Ideally, we would differentiate between those not complying because

their parents chose to delay their entry and those held back in early grades. The former group

self-selects into having an age advantage in their cohort while the latter is retained, presumably by

their teachers.
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Figure A.2: The Impact of Birthdays on Grading Scale Exposure Between Years

Notes: Students born to the left of the cutoff in our analysis sample begin high school in the 2014-2015 school year; the treated
students instead begin in the 2015-2016 school year. We provide a 30-day bandwidth as an illustrative example; in reality, the
bandwidth depends on the outcome of interest but never exceeds two months.

A.2 Design

Under our regression discontinuity research design, treated students close to the birth date cutoff

unknowingly begin high school under a more relaxed grading standard compared to those born

just before, who instead face the usual 7-point scale. We argue that, even in the face of student

retention in primary schooling, assignment to treatment status is quasi-random around the birth

date cutoff because the policy became known during our treated sample’s eighth grade year. Figure

A.2 illustrates how we select our treatment (in red) and control (in blue) groups to created our

analysis sample.
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A.3 Regression Discontinuity Specifications

Table A.1: Results Under Various Changes to RD Specifications

GPA in Math I EOC Score Number of Days Prob. of Chronic

9th Grade (Standardized) Absent in 9th Grade Absence in 9th Grade

Panel A: Analysis Results (Reproduced)

10-Point Scale 0.266 0.063 1.324 0.048

(0.071) (0.089) (0.616) (0.020)

97.07% CI (0.111, 0.420) (-0.130, 0.257) (-0.019, 2.667) (0.003, 0.093)

Panel B: 30-Day Bandwidth

10-Point Scale 0.260 0.057 1.634 0.076

(0.090) (0.097) (0.791) (0.027)

97.07% CI (0.063, 0.456) (-0.154, 0.269) (-0.090, 3.359) (0.017, 0.135)

Panel C: Quadratic Fit of Running Variable

10-Point Scale 0.253 0.007 1.697 0.085

(0.108) (0.136) (0.946) (0.031)

97.07% CI (0.019, 0.488) (-0.289, 0.302) (-0.366, 3.759) (0.017, 0.153)

Panel D: K Reduced by 20%

10-Point Scale 0.269 0.065 1.274 0.042

(0.069) (0.084) (0.587) (0.019)

97.07% CI (0.121, 0.417) (-0.118, 0.247) (-0.006, 2.554) (0.000, 0.084)

Panel E: K Increased by 20%

10-Point Scale 0.264 0.064 1.339 0.049

(0.074) (0.092) (0.624) (0.021)

97.07% CI (0.104, 0.425) (-0.136, 0.264) (-0.022, 2.699) (0.004, 0.094)

Notes: We report 97.07% confidence intervals to align with the honest critical value of 2.18 outlined in Armstrong and Kolesár

(2020). Panel A reproduces the main results. Panel B fixes all outcomes to a 30-day bandwidth. Panel C considers g(bi) as a

quadratic as opposed to a linear fit. Panels D and E respectively decrease and increase the values of (K1,K2) in the first stage

estimation procedure for Kolesár and Rothe (2018).
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Table A.2: Student Outcomes Under Additional Specifications

GPA in Math I EOC Score Number of Probability of

9th Grade (Standardized) Days Absent Chronic Absence

Panel A: Kolesár & Rothe

10-Point Scale 0.253 0.171 1.232 0.040

(0.074) (0.092) (0.614) (0.020)

95% Honest CI (0.091, 0.414) (-0.031, 0.373) (-0.095, 2.558) (-0.003, 0.084)

1st Stage Estimate 0.439 0.437 0.439 0.440

Mean (Left) 2.436 0.108 6.479 0.059

Bandwidth 46.27 35.65 46.24 49.96

Panel B: 2SLS Without Covariates

10-Point Scale 0.253 0.173 1.233 0.041

(0.074) (0.093) (0.616) (0.020)

97.07% CI (0.091, 0.415) (-0.029, 0.375) (-0.110, 2.575) (-0.003, 0.085)

1st Stage Estimate 0.439 0.437 0.439 0.440

Observations 13,901 10,593 13,901 14,816

Panel C: 2SLS With Covariates

10-Point Scale 0.263 0.095 1.189 0.042

(0.072) (0.092) (0.626) (0.021)

97.07% CI (0.107, 0.419) (-0.104, 0.295) (-0.178, 2.551) (-0.003, 0.089)

Notes: Means to the left are calculated manually over a bandwidth range {−h∗, ...,−1}, where h∗ is the MSE-optimal

bandwidth. We report 97.07% confidence intervals to align with the honest critical value of 2.18 outlined in Armstrong and

Kolesár (2020). The covariates used in panels C and D include indicators for gender, race/ethnicity, socioeconomic status, and

gifted status in reading and math.
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A.4 Covariate Smoothness Plots

Figure A.3: Smoothness of Student Pre-Treatment Covariates
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Notes: This figure shows discontinuities in student pre-treatment covariates. All panels are created by plotting the average
outcomes across each birth date fitting the data using a linear regression without controls on either side of the cutoff.

45



A.5 Additional Tables

Table A.3: Student Sorting Across Years

2014 2015 2016 2017 2018

Born after Oct. 16 -0.395 -0.411 -0.398 -0.421 -0.461

(0.015) (0.014) (0.015) (0.015) (0.013)

95% Honest CI (-0.427, -0.363) (-0.441, -0.381) (-0.432, -0.365) (-0.453, -0.389) (-0.489, -0.432)

Mean (Left) 0.545 0.568 0.541 0.575 0.594

Bandwidth 30.49 33.36 27.08 30.65 35.17

Notes: Each effect in the first row comes from estimates produced by the procedure for a sharp regression discontinuity

outlined in Kolesár and Rothe (2018) using a data-driven approach to calculate the bounds on the second derivative.

Table A.4: Effects Across Prior Academic Preparedness and Demographics

(1) (2) (3) (4)
Core Academic Math I EOC Score Total Number Probability of

Grade Point Average (Standardized) of Days Absent Chronic Absence

Panel A: Gender

Female 0.268 -0.001 0.947 0.054
(0.089) (0.109) (0.799) (0.026)

Male 0.244 0.064 1.550 0.037
(0.115) (0.143) (0.952) (0.033)

Panel B: Race

White 0.337 0.040 1.696 0.063
(0.112) (0.147) (0.992) (0.033)

Non-White 0.202 0.049 1.078 0.036
(0.092) (0.110) (0.795) (0.026)

Panel C: EDS Status

EDS 0.257 0.025 1.458 0.059
(0.084) (0.104) (0.759) (0.026)

Non-EDS 0.263 0.091 0.773 0.010
(0.132) (0.176) (1.033) (0.029)

Notes: We fix the bandwidth for each specification to be the same as in the full sample version. We present results

from regressions which include covariates and district fixed effects. Heteroskedasticity-robust standard errors are

reported in parentheses beneath each point estimate.
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Table A.5: Effects on Longer-Run Outcomes

Unweighted GPA Days Absent Chronic Absence

Panel A: Year 2

Full Sample 0.131 1.114 0.026

(0.055) (0.475) (0.016)

Low Ability 0.115 1.801 0.058

(0.075) (0.761) (0.026)

High Ability -0.001 1.039 0.003

(0.062) (0.524) (0.017)

Panel B: Year 3

Full Sample -0.000 3.598 0.082

(0.048) (0.651) (0.020)

Low Ability -0.077 5.949 0.162

(0.067) (0.293) (0.033)

High Ability -0.098 2.143 0.040

(0.056) (0.688) (0.023)

Panel C: Year 4

Full Sample 0.023 2.334 0.053

(0.050) (0.912) (0.023)

Low Ability -0.097 3.444 0.104

(0.072) (1.481) (0.038)

High Ability -0.006 1.223 0.019

(0.064) (1.011) (0.028)

Notes: We present robust standard errors in parentheses. Each panel refers to a different year

in high school. We abstain from writing, e.g., “10th Grade” because some students may not

matriculate. In an effort to maintain the same sample size across years, we do not condition on

grade level.
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A.6 Additional Figures

Figure A.4: Additional Distributions of Final Course Averages in 9th Grade Math
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Notes: As before, red labels denote cut grades. We fix both distributions to display only final grades at or above

50, accounting for the vast majority of transcript grades.
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